
A portable and efficient Lagrangian particle capability for
idealized atmospheric phenomena

John M. Dennis
National Center for Atmospheric

Research
Boulder, Colorado, USA

dennis@ucar.edu

Jian Sun
National Center for Atmospheric

Research
Boulder, Colorado, USA

sunjian@ucar.edu

Sheri Voelz
National Center for Atmospheric

Research
Boulder, Colorado, USA
mickelso@ucar.edu

George Bryan
National Center for Atmospheric

Research
Boulder, Colorado, USA

gbryan@ucar.edu

David Richter
University of Notre Dame
South Bend, Indiana, USA
David.Richter.26@nd.edu

ABSTRACT
The Cloud Model version 1 is an atmospheric model that allows for
idealized studies of atmospheric phenomena. A new Lagrangian mi-
crophysics capability has been added, enabling a significantly more
accurate representation than the traditional bulk or multi-moment
approaches frequently found in mesoscale atmospheric models. We
have utilized a directive-based approach to enable a single source
code to efficiently support execution on both CPU and GPU-based
computing platforms. In addition to the use of accelerator directives,
changes to the data structures and the message-passing approach
used by the Lagrangian particle-based microphysics module were
necessary to enable efficient execution for a large number of parti-
cles. We focus on a configuration that will be used to investigate
the impact of oceanic sea spray on the atmospheric boundary layer
within a hurricane. We observe a factor of 5.1× reduction in time to
the solution when comparing the execution time for 256 NVIDIA
A100 GPUs versus 256 AMD EPYCTM Milan-based compute nodes
using 1 billion particles.
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1 INTRODUCTION
Cloud Model 1 (CM1) is a numerical modeling system designed
for theoretical studies of atmospheric phenomena. As the name
suggests, it was originally developed for studies of clouds and thun-
derstorms [4], but its capabilities have been expanded to a much
broader range of applications, including microscale turbulence
(scales less than 1 m) [5], flows induced by mountains/topogra-
phy [22], and tropical cyclones/hurricanes [27].

Several different equation sets and numerical techniques have
been implemented in CM1 to accommodate these broad ranges
of applications. The fluid-dynamics solver uses the compressible
equations of motion, which are stepped forward in time using a
“time-splitting” technique in which terms responsible for the prop-
agation of acoustic waves are integrated over a “small” time step
and all other tendency terms are updated only on “large” time
steps [26]. The time- and space-discretization methods are docu-
mented in [30]. The effects of subgrid turbulence are parameterized
using the method of [9], which is widely used for large-eddy simu-
lations of turbulent flows. CM1 also supports a Lagrangian particle
capability which has historically been used only for analysis of
passive tracers.

Traditionally, clouds are defined and evolved in atmospheric
models by tracking Eulerian fields of various cloud properties (num-
ber concentration, liquid water content, etc.). However, an Euler-
ian approach suffers for multiple reasons, including assumptions
regarding the droplet size distribution, artificial partitioning of hy-
drometeor classes, and numerical diffusion [14]. For a wide variety
of physical applications, a Lagrangian framework is advantageous,
where the governing equations for mass, momentum, and energy
conservation are applied in a frame of reference that moves with
some elements of the flow. A Lagrangian approach allows for a
more straightforward accounting of key processes such as evapo-
ration/condensation, collision with other droplets, activation from
the aerosol to droplet state, and rain/drizzle initiation.

For this project, we extend the existing Lagrangian particle ca-
pability within CM1 such that the Lagrangian elements or particles
become aerosols and cloud droplets. Each computational particle
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represents some specified “multiplicity” of actual cloud/aerosol
droplets with the same properties — thus a cloud in this kind of
representation would be represented by a large number of these
Lagrangian “superdroplets” in the same vicinity [25].

While it is well documented that a Lagrangian framework has
significant advantages by eliminating artificial diffusion and by
increasing the efficacy of the underlying physical description of
cloud droplets [14], a major drawback of the method is the need
to track potentially huge numbers of droplets through the domain.
Shima et al. [25] provided a rule of thumb that to properly capture
the droplet size distribution locally, every computational grid point
should contain at least O(100) computational droplets. While this
scalingwith grid size is severe, it is evenworse if there are additional
droplet properties that must be represented (aerosol composition
for example), which would require a larger number of properties
per grid point.

To address the significant cost of the Lagrangian droplet ap-
proach, we utilize the computational capability of GPU comput-
ing. We believe that an efficient GPU-enabled Lagrangian droplet
capability could push this numerical method from being a well-
acknowledged technique that is impractical to one that becomes
the new standard for cloud simulations.

To evaluate the ability of a GPU-enabled Lagrangian droplet ca-
pability within CM1 to advance our understanding of atmospheric
phenomena, we focus on the boundary layer between the ocean
and the high-velocity wind field of tropical cyclones. For this study,
additional terms are added to the governing equations of CM1 to
account for the rotating-flow environment of tropical cyclones [3].
The Lagrangian droplets in this case correspond to sea spray that is
injected from oceanic waves into the turbulent atmospheric bound-
ary layer. We have leveraged the Accelerating Scientific Discovery
(ASD) program of the National Center for Atmospheric Research
(NCAR) to perform multiple high-resolution simulations to explore
the impact of sea spray on the boundary layer. In particular, we per-
formed several simulations with various input parameters including
the distance from the center of the cyclone (R); the wind speed at
the top of the boundary layer (V); and the radial decay parameter
(n) that describes how V changes with radius. Further details, in-
cluding validation using observations from tropical cyclones, are
available in [6].

In the remainder of this paper we describe the necessary code
optimizations in Section 2, while in Section 3 we document our
experimental configuration. Next in Section 4 we describe the ap-
plication simulation rates of the resulting code on both CPU and
GPU-based nodes. We finish with some concluding remarks in
Section 5.

2 OPTIMIZATION
We choose to utilize an OpenACC directive approach to enable the
use of GPUs within CM1. Our choice of OpenACC versus OpenMP
offload was made based on an assessment at the start of this project
that OpenACCwas both more robust and performant than OpenMP
offload [28]. The choice of a directive-based approach was based
on several considerations, including the fact that CM1 is currently

written in FORTRAN and is used by a small group of performance-
sensitive researchers who do not necessarily have access to GPU-
based computing platforms. A directive-based approach also pro-
vides the flexibility to enable the code development on GPU to
advance incrementally. Incremental code development resolves the
challenges of porting a large code volume to GPU at once and
facilitates the step-by-step verification of correctness. Note that
correctness is determined by comparing several metrics generated
by the GPU-enabled code versus the original CPU code compiled
with two different but trusted compilers.

Several similar efforts to enable the execution of a single code
base on CPUs or GPUs exist. Michalakes et al. [17] had success-
fully added OpenACC directives to an expensive component of
the Weather Research and Forecasting model (WRF) and achieved
nearly 10× speedup. Dennis et al. [10] used OpenACC directives and
numerical algorithm improvements to achieve a greater than 100×
speedup on GPU versus the original CPU version for the Spline
Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation
(SAMURAI) code. Gettelman et al. [13] used OpenACC directives
to port the cloud microphysics parameterization in the Community
Atmosphere Model (CAM) to GPU and obtained 2× to 3× speedup.

Several other Mesoscale and LES models have already been
ported to GPU successfully and achieved noticeable speedup, in-
cluding GALES [24], PALM [16], MicroHH [15], FastEddy [23] and
JOULES [2].

2.1 Basic loop offload
A simplified call tree for CM1 is provided in Figure 1. Note that
the time stepping loop contains several different basic phases of
the calculation including Advection, Turbulence, Acoustic Solver,
Lagrangian droplets, Diagnostics, and Output IO. Because the com-
putational cost of CM1 is typically dominated by the time-stepping
loop, we focus on the addition of OpenACC directives within the
sections of code located within the time-stepping loop. Fortunately,
a very large percentage of the execution time was located in sec-
tions of the code that were easily ported to the GPU using a trivial
application of OpenACC directives to simply nested loop bodies.
There were more subtle changes that were necessary to port the
Advection sections of CM1 to the GPU. We first describe changes
to the Advection followed by the more involved changes that were
necessary to achieve GPU-enablement for the Diagnostics and La-
grangian droplets sections of the code.

While most of the loop had trivially nested loop bodies, some
slightly more complex loops were also present. Figure 2 illustrates a
stencil operator that is located within the Advection section. While
it would be possible to break or fission the outer k-loop and use a
simple directive approach on the remaining two loops, such a trans-
formation would, unfortunately, have undesirable side effects. In
particular, CPU performance would be reduced by the loop fission
because it would eliminate cache reuse for the variable “a”. Instead
the two inner loops are marked with a loop worker vector collapse(2),
while the outer loop is marked with the loop gang directive. The
use of the multi-level loop directives preserves the original loop-
ing structure while still fully exposing the loop-level parallelism
necessary for efficient GPU execution.
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Initialize Model
 

notDone?

Advection

 False 

Write Restart IO
 True 

Acoustic Solver

UseDroplets?

Droplet-Microphysics
 True 

BulkMicrophysicsDriver
 False 

Droplet-Comm

Turbulence

DiagTime?

Diagnostics
 True 

OutputTime?

 False 

 False 

Output IO
 True 

  Lagrangian droplets   Built-in Microphysics

Figure 1: Code flow diagram for CM1 time stepping loop.

1 Inpu t : a
2 Output : x , y
3
4 ! $ a c c p a r a l l e l
5 ! $ a c c l o o p gang
6 f o r e a ch kdx in v e r t i c a l
7 ! $ a c c l o o p worke r v e c t o r
8 f o r e a ch i dx in h o r i z o n t a l
9 x = f l x ( s t e n c i l −in−x ( a ) )
10 ! $ a c c l o o p worke r v e c t o r
11 f o r e a ch i dx in h o r i z o n t a l
12 y = f l x ( s t e n c i l −in−y ( a ) )
13 ! $ a c c end p a r a l l e l

Figure 2: Example stencil operator used that uses both an ’acc
loop gang’ and ’acc loop work vector’ clause. Themultiple acc
loops preserve the original code structure and allow cache
reuse for the CPU version.

2.2 Diagnostics calculations
While a significant amount of the GPU-enablement work involved
the simple addition of OpenACC directives there were a number
of loops that required non-trivial transformations. Such loops are
frequently located in the Diagnostics section of CM1. An exam-
ple of such a transformation that is necessary to calculate the
Courant–Friedrichs–Lewy (CFL) condition within CM1 is provided
in Figure 3. While this calculation is equivalent to a combined
FORTRAN maxval() and maxloc() operation, its implementation is

greatly complicated by the fact that the maxloc() function is not
currently supported in OpenACC. While it would be possible to
identify the maximum value using the OpenACC reduction clause,
its location index can not be easily determined using the current
OpenACC standard.

Furthermore, breaking the calculation into two loops that iterate
over full 3-dimensional variables, which frequently exceed the size
of the last level cache, would potentially hurt CPU performance
due to cache misses. The implementation in Figure 3, provided by
[20], addresses these challenges by breaking up the calculation of
the CFL and its location into two loops, one over the 3-dimensional
variables, and a second over a much smaller variable whose hori-
zontal dimension have been collapsed into a single dimension. The
first loop which corresponds to lines 8 to 15 in Figure 3 performs
a reduction over the vertical dimension by locating the maximum
value “wsp” and its indexed location within a single thread. The
second loop in lines 20 to 26 calculates the maximum value and its
index across threads, by performing the reduction among pairs of
threads. The resulting value “fmax” along with its location “locmax"
is set on lines 29 and 30 of Figure 3.

In the next section, we describe even larger code transformations
that were necessary to enable efficient execution of the Lagrangian
droplets section of CM1 on both CPU and GPU platforms. Unlike
the previously described modifications, which involved loop level
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1 Inpu t : v e l o c i t i e s ! v e l o c i t e s
2 Output : c f l , locmax ! CFL and t h e l o c a t i o n
3
4 I n i t i a l i z e c f l = −1 . 0 , l o c [ idx , kdx ] = 0
5
6 ! r e d u c e t h e v e r t i c a l d imen s i on i n t o a
7 ! h o r i z o n t a l a r r ay
8 ! $ a c c p a r a l l e l l o o p ! l o o p o v e r h o r i z o n t a l
9 f o r e a ch i dx : = 1 to nho r i z
10 ! $ a c c s e q l o o p ! l o o p o v e r v e r t i c a l
11 f o r e a ch kdx in v e r t i c a l
12 c a l c u l a t e wsp : = sqrt ( v e l o c i t i e s ^2 )
13 i f wsp > c f l ( i dx )
14 update c f l ( i d x ) : = wsp
15 update l o c ( i dx ) : = kdx
16
17 ! R educe t h e h o r i z o n t a l d imen s i on t o a s i n g l e v a l u e
18 s e t p a i r s : = nho r i z / 2
19 s e t rng : = ( nho r i z +1 ) / 2
20 while ( rng i s > 1 )
21 ! $ a c c p a r a l l e l l o o p
22 f o r e a ch i : = 1 to p a i r s
23 i f c f l ( i ) <= CFL ( rng )
24 r e p l a c e c f l , l o c with v a l u e s from rng+ i
25 update p a i r s : = rng / 2
26 update rng : = ( rng + 1 ) / 2
27 ! maximum CFL and i t s l o c a t i o n
28
29 s e t fmax : = CFL ( 1 )
30 s e t locmax := l o c ( 1 )

Figure 3: Efficient GPU pseudo-code that calculates the
Courant–Friedrichs–Lewy (CFL) value and returns its loca-
tion within the data volume. This calculation is equivalent
to a combined FORTRAN maxval() and maxloc() operation.

changes, the necessary alterations for the Lagrangian droplets sec-
tion involved changes to both the data structures, algorithmic and
the message-passing approach.

2.3 Lagrangian droplets
At the start of this effort, a basic particle (or, equivalently, droplet)
capability existed within CM1. This generic particle capability had
several different components that were subsequently modified to
support a more sophisticated Lagrangian cloud-droplet capability.
The full Lagrangian droplet capability we refer to as Lagrangian
droplets in Figure 1 and contains both the Droplet-Microphysics and
Droplet-Comm. The Droplet-Microphysics performs the actual mi-
crophysics calculations for each droplet. The Droplet-Comm moves
state information from one MPI rank to another. The most prob-
lematic aspect of the basic or “naive” droplet capability within CM1
was that it was initially designed to support ≈100,000 droplets, not
the very large number that is necessary to enjoy the advantages of
the Lagrangian cloud model approach.

In particular, it allocated a single large array ”pdata” on each
MPI rank with the size 𝑛𝑝𝑎𝑟𝑐𝑒𝑙𝑠 × 𝑛𝑝𝑣𝑎𝑙𝑠 , where nparcels is the
total number of droplets present in the entire simulation and npvals
the number of physical properties of each droplet. The actual mi-
crophysics calculations occur in a large do-loop of length 𝑛𝑝𝑎𝑟𝑐𝑒𝑙𝑠 .
An if-test is included in this do-loop which determines if a partic-
ular MPI rank owns a specific droplet. The communication step

present in the naive implementation of Droplet-Comm was imple-
mented by setting the value of droplets not owned by a particular
MPI rank to a masked value followed by a call to MPI_Allreduce().
While such a naive implementation may be acceptable for a modest
number of droplets, the cost of the Allreduce was excessive for
greater than one million droplets. A better solution was needed
that would both reduce the total memory requirements as well as
the communication cost. We next describe our improved solution.

2.3.1 Revised data structures. To address the previously mentioned
deficiencies in the naive droplet implementation, we began by elim-
inating the duplicate droplet-specific data in the “pdata” array. In-
stead of allocating the array to be of size 𝑛𝑝𝑎𝑟𝑐𝑒𝑙𝑠 × 𝑛𝑝𝑣𝑎𝑙𝑠 , we
now allocate it of size 𝑛𝑝𝑎𝑟𝑐𝑒𝑙𝑠𝐿𝑜𝑐𝑎𝑙 ×𝑛𝑝𝑣𝑎𝑙𝑠 . Here 𝑛𝑝𝑎𝑟𝑐𝑒𝑙𝑠𝐿𝑜𝑐𝑎𝑙 =
𝑛𝑝𝑎𝑟𝑐𝑒𝑙𝑠/𝑝 + 𝑏𝑢𝑓 𝑓 𝑒𝑟𝑆𝑖𝑧𝑒 where 𝑝 is the number of MPI ranks,
and bufferSize is a padding to provide extra storage for additional
droplets that may enter the current MPI rank. The modified data
structure is illustrated in Figure 4.

For simplicity, we allocate “pdata” at the beginning of the simu-
lation. Because of the characteristics of the geophysical flow, we
expect droplet spatial distributions that are approximately homoge-
neous throughout the simulation. It is for this reason that we believe
a fixed length allocated array to be sufficient versus a dynamically
allocated link-list-based approach. The value of bufferSize is set to
be approximately 10% of the total size of 𝑛𝑝𝑎𝑟𝑐𝑒𝑙𝑠/𝑝 which we have
found to be generous as early tests indicate that typically only 1%
of the total droplets will migrate from one MPI rank to another.

Changing the size of the “pdata” array gives the extra advantage
that it is now possible to remove the if-test within the main do
loop that was previously necessary to only perform calculations
on droplets owned by a particular MPI rank. Instead, all droplets
are placed at the beginning of the “pdata” array, and the number
of active droplets 𝑛𝑝𝑎𝑟𝑐𝑒𝑙𝑠𝐴𝑐𝑡𝑖𝑣𝑒 is used for the extent of the main
loop bounds. The elimination of the if-test does however require
more detailed bookkeeping routines.

2.3.2 Bookeeping approach. An example of the necessary book-
keeping is illustrated in Figure 4. Panel (a) represents the original
form of the “pdata" array. Panel (b) in Figure 4 illustrates the “pdata"
array after three droplets depart, leaving three “holes" in the array.
Two of these “holes" are filled by incoming droplets illustrated in
panel (c). The remaining hole is filled by relocating the last active
droplet in the “pdata" array which is illustrated in panel (d). The
resulting “pdata" array has the same desirable contiguous storage
properties as the initial version of the array.

As will be illustrated in Section 4, the use of the compacted
“pdata” variable has a significant positive impact on the execu-
tion time of the GPU on the Lagrangian microphysics. Instead of
launching a warp of threads where only several threads have active
droplets, it is now possible to ensure that virtually all warps will
be kept busy calculating active droplets.

2.3.3 Improved MPI implementation. Changes to the “pdata” array
also allow the creation of a more sophisticated message-passing
implementation for the droplets that minimizes the amount of data
volume that is passed through MPI. This is achieved through a
two-phase message-passing implementation. In the first phase of
the communication, all neighboring MPI ranks exchange a single
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nparcelsActive

nparcelsTotal

buffersize

(a)

3 droplets depart, creating 3 holes, 

(b)

2 droplets arrive, fills 2 holes

(c)

1 droplet relocated, fills 1 hole

(d)

Figure 4: A example of the modified data structure and nec-
essary operations used by the Lagrangian droplets.

integer with each of their eight neighbors that indicates the num-
ber of droplets that will exit an MPI rank’s computational domain.
Based on the information from the first phase, the second phase
involves the allocation of the necessary buffers, the packing of data
into these buffers, and the execution of the necessary MPI send
and receive calls. The droplet information is then unpacked into
the “pdata” array potentially filling the holes as described previ-
ously. While this message-passing approach requires two sets of
calls to the MPI interface and the allocation of message-passing
buffers, it greatly reduces the data volume versus the naive ap-
proach. Message passing volume for improved message passing
approach𝑀𝑠𝑔𝑉𝑜𝑙𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 is provided in equation 1

𝑀𝑠𝑔𝑉𝑜𝑙𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 𝑠𝑧𝑟𝑒𝑎𝑙 ∗ (𝑛𝑝𝑎𝑟𝑐𝑒𝑙𝑠𝐷𝑒𝑝𝑎𝑟𝑡 ∗𝑛𝑝𝑣𝑎𝑙𝑠)+8∗𝑠𝑧𝑖𝑛𝑡 (1)

where𝑛𝑝𝑎𝑟𝑐𝑒𝑙𝑠𝐷𝑒𝑝𝑎𝑟𝑡 is the number of droplets that are departing a
particularMPI rank and 𝑠𝑧𝑟𝑒𝑎𝑙 and 𝑠𝑧𝑖𝑛𝑡 are the size of floating point
and integer words respectively. Because the naive implementation
uses an MPI_Allreduce call, it is possible to determine the amount
of message passing volume using the analytical expression for
Rabenseifner’s algorithm provided in [29]. The message passing
volume for the naive implementation provided in equation 2 is

𝑀𝑠𝑔𝑉𝑜𝑙𝑛𝑎𝑖𝑣𝑒 = 2 ∗ 𝑠𝑧𝑟𝑒𝑎𝑙 ∗ 𝑛𝑝𝑎𝑟𝑐𝑒𝑙𝑠 ∗ 𝑛𝑝𝑣𝑎𝑙𝑠 ∗
(𝑝 − 1)

𝑝
. (2)

Since 8 << 𝑛𝑎𝑟𝑐𝑒𝑙𝑠𝐷𝑒𝑝𝑎𝑟𝑡 ∗ 𝑛𝑝𝑣𝑎𝑙𝑠 we can estimate that the
resulting reduction in message passing volume for the improved
versus the naive implementation of Droplet-Comm is

𝑀𝑠𝑔𝑉𝑜𝑙𝑛𝑎𝑖𝑣𝑒

𝑀𝑠𝑔𝑉𝑜𝑙𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑

=
2 ∗ 𝑛𝑝𝑎𝑟𝑐𝑒𝑙𝑠 ∗ (𝑝−1)

𝑝

(𝑛𝑝𝑎𝑟𝑐𝑒𝑙𝑠𝐷𝑒𝑝𝑎𝑟𝑡 )
(3)

2.3.4 Efficient bookkeeping on the GPU. One of the challenges of
the more efficient message-passing approach is the need to keep

1 i npu t : pd ! i n p u t a r r ay
2 ou tpu t : h ind ! i n d i r e c t a d d r e s s a r r ay
3
4 i n i t i a l i z e : i : = 0
5 f o r e a ch d r o p l e t
6 i f pd ( d r o p l e t ) == unde f ined
7 update i : = i + 1
8 hind ( i ) = d r o p l e t

Figure 5: CPU pseudo-code for loop that gathers array indices
that satisfy a particular condition.

track of exactly which droplets need to be sent. On the CPU this
bookkeeping is achieved using a single indirect address array to
keep track of the location of the departing droplet in the pdata
data structure. A trivial loop in pseudo-code to assign this indirect
address array is provided in Figure 5.

An efficient implementation on the GPUwhich requires exposing
extensive loop parallelism is non-trivial due to the inherently serial
nature of the loop in Figure 5.While it is possible to execute the code
in Figure 5 on a single thread, the extent of the loop 𝑛𝑝𝑎𝑟𝑐𝑒𝑙𝑠𝐿𝑜𝑐𝑎𝑙
is typically quite large (106). A better solution is needed which
allows the use of all available parallelism on the GPU.

We address this challenge through the use of a built-in CUDA
function 𝑐𝑜𝑢𝑛𝑡_𝑝𝑟𝑒 𝑓 𝑖𝑥 () [8] which performs a parallel-prefix op-
eration that counts up the number of times a particular condition
holds in parallel.

We illustrate a simple example of the use of the 𝑐𝑜𝑢𝑛𝑡_𝑝𝑟𝑒 𝑓 𝑖𝑥 ()
operator in Figure 6. For example, consider locating the indices of
an arbitrary array 𝑝𝑑 from Figure 6 that are equal to U. Instead of
calculating the indirect address hind using a simple loop on the
GPU, several intermediate steps are necessary. First the bit mask
msk in Figure 6 is calculated which indicates the location of U. Next
the 𝑐𝑜𝑢𝑛𝑡_𝑝𝑟𝑒 𝑓 𝑖𝑥 () operator calculates the cindx array which is
the number of times the msk variable is true left of the current
index. In our example in Figure 6, array elements cindx(4:5) are set
to one, and element cindx(6) is set to two. Note that the cindx array
says nothing about the presence U in the array element pd(6). It is
now possible to set the values for the indirect address hind array
properly.

The GPU pseudo-code that uses the 𝑐𝑜𝑢𝑛𝑡_𝑝𝑟𝑒 𝑓 𝑖𝑥 () operator
suggested by [21] is provided in Figure 7. Note that the assignment
of the msk and cindx arrays lines 5 to 7 and line 9 in Figure 7 can
be executed in parallel. The assignment of all but the last element
of the hind array lines 11 to 15 can also be executed in parallel. The
assignment of the last element of the hind array, which corresponds
to lines 18 to 22 in Figure 5, must be performed after all other
assignments of hind.

3 EXPERIMENTAL CONFIGURATION
We use the Derecho system located at the NCAR Wyoming Su-
percomputing Center (NWSC) [19]. Derecho [12] contains 2488
CPU-based nodes and 82 GPU-based nodes. The CPU-based nodes
on Derecho [12] utilize a dual-socket AMD-based EPYCTM Milan
7763 processor that has 128 hardware cores. TheGPU-based node on
Derecho uses a single socket AMD-based EPYCTM Milan processor
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Figure 6: Example of the use of the count_prefix() algorithm
for gather arrays indices. The indirect address array “hind"
is calculated based on the location of the value “U" in the
input array “pd". Two temporary arrays “msk" and “cindx"
array are necessary to complete the calculation. Note that
the shaded elements of each of the arrays can be assigned in
parallel.

1
2 Inpu t : pd ! i n p u t a r r ay
3 Output : h ind ! i n d i r e c t a d d r e s s a r r ay
4
5 ! $ a c c p a r a l l e l l o o p gang v e c t o r
6 f o r e a ch d r o p l e t : = 1 , numDroplets
7 s e t msk : = a r r ay . eq . unde f ined
8
9 c a l c u l a t e c indx : = c o un t _ p r e f i x ( mask=msk )
10
11 ! c o l l e c t t h e l o c a t i o n o f t h e s p e c i a l v a l u e s
12 ! $ a c c p a r a l l e l l o o p gang v e c t o r
13 f o r e a ch d r o p l e t : = 1 , numDroplets −1
14 i f ( c indx ( d r o p l e t ) ! = c i n d x ( d r o p l e t +1 )
15 s e t hind ( c indx ( d r o p l e t +1 ) ) : = d r o p l e t
16
17
18 ! S p e c i a l t r e a tm e n t f o r t h e l a s t v a l u e i n t h e a r r ay
19 ! $ a c c k e r n e l s d e f a u l t ( p r e s e n t )
20 i f mask ( numDroplets )
21 s e t h ind ( c indx ( numDroplets ) +1 ) = numDroplets
22 ! $ a c c end k e r n e l s

Figure 7: GPU pseudo-code for loop that gathers array indices
that satisfy a particular condition.

and four 40GB memory NVIDIA A100 GPUs. Results are provided
using Intel OneAPI 22.1, NVHPC 23.5, and GNU 12.1 compilers.

CM1 utilizes a 3-dimensional (3D) rectilinear grid that can be con-
figured to use either cyclic, open, or rigid-wall lateral boundaries.
For this work, we utilize cyclic boundaries for the horizontal “x" and
“y" dimensions. The top/bottom boundaries in the “z" dimension

are rigid walls, with various options for kinematic and thermody-
namic boundary conditions (e.g., no-slip, free-slip, semi-slip; no
flux, specified flux; etc). We refer to the number of grid points in
the “x", “y", and “z" dimensions as “nx", “ny" and “nz" respectively
and the size of the total grid using the notation 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧. In
this paper, we provide timing results for several different values of
grid sizes including 256 × 256 × 256 for a single CPU node results,
and for exploring the cost of the Lagrangian droplet capability as
a function of the number of droplets. We also provide multi-node
and multi-GPU results using a 2048 × 2048 × 1024 using 1 billion
droplets. While this configuration falls significantly short of the
goal of O(100) droplets per grid point, it nonetheless represents
a significant advance in the ability to use Lagrangian particles to
understand atmospheric phenomena.

4 RESULTS
We next describe the resulting performance for the modified code
that has been GPU enabled on both CPU and GPU platforms.

4.1 Base CPU performance
Recall from Section 2 that a modest number of code changes to
loop structure were necessary to support efficient execution of
CM1 on the GPU. These types of modifications are necessary to
make the application GPU-ready. We illustrate the impact that
these modifications have on the performance of the CPU code by
measuring the execution time for a 256 × 256 × 256 computational
domain on Derecho using the original and modified source code.
For this initial comparison, we configure the CM1 fluid-dynamics
solver in such a way as to match the intended ASD simulation with
the exception that we deactivate any of the droplet capabilities. The
execution time for a single minute of simulation is illustrated in
Figure 8. It is clear from Figure 8 that modifications necessary to
support efficient GPU execution do not significantly impact the
execution time on the CPU. We next examine the impact that the
more invasive code changes that were necessary to support efficient
execution of the Lagrangian droplet capability on both CPU and
GPU-based nodes.
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Figure 8: The execution time for CM1 using CPU-based nodes
using both the original and modified code base.
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4.2 Lagrangian droplets
Unlike the modest source code changes necessary to GPU-enable
the Turbulence, Advection, Acoustic Solver, and Diagnostics sections
of the time step loop, the changes necessary to enable the La-
grangian droplet capability are much more involved. Note that due
to the presence of the Lagrangian droplet capability, the built-in
“bulk” microphysics schemes performed in BulkMicrophysicsDriver
were deactivated and will not be discussed. To quantify the im-
pact of our code changes to Lagrangian droplets we use the same
256 × 256 × 256 domain used in the previous section. We activate
the Lagrangian droplet capability and explore the characteristics of
two code implementations for different numbers of droplets.

The two different versions are: the initial version of the La-
grangian droplets which uses the naive MPI message passing im-
plementation (BASE) and an optimized version with an improved
data structure and communication operators (OPT). Because the
improved Lagrangian droplet implementation, which was described
in Section 2.3, involves changes to the message-passing approach,
we present all results in this section using multiple nodes. For the
CPU-based configurations, we report results on 8 nodes of Derecho
that utilize all 128 cores per node. For the GPU-based configurations,
we use a total of 8 CPU cores to drive the eight NVIDIA A100 GPUs
distributed on 2 nodes of Derecho. We vary the total number of
droplets from a low of 100,000 (100K) to a high of 256 million (256M).
Figure 9 illustrates the total execution time for the Lagrangian
droplet for the BASE, OPT implementations for various numbers
of droplets on both the CPU and GPU-base nodes of Derecho. It
is clear from Figure 9 that the cost of Lagrangian droplet calcula-
tion exhibits a linear relation for the BASE-CPU, BASE-GPU, and
OPT-CPU configurations. For the OPT-GPU configuration, there
appears to be a fixed overhead that is significant for small droplet
counts that becomes less important at larger droplet counts. This
overhead is a direct result of the use of the 𝑐𝑜𝑢𝑛𝑡_𝑝𝑟𝑒 𝑓 𝑖𝑥 () opera-
tion to gather indirect address arrays illustrated in Figure 7. Using
the BASE implementation, the execution time of eight A100 GPUs
is equivalent to the execution time on 1,024 AMD Milan CPU cores
(see Figure 9). The GPU does enable the simulation of more droplets
on the GPU because the droplet-specific storage is only replicated
four times per node, or once per MPI rank, versus the 128 times
per node on the CPU. In contrast, by using the improved MPI im-
plementation the same CPU configuration can now simulate four
times the number of droplets. The reduced execution time on the
CPU for the OPT version is a direct result of an improved message-
passing implementation and will be discussed next. On the GPU,
the OPT code enables a factor of 109× reduction in execution time
compared to the naive MPI implementation for 16 million droplets.
This significant reduction from 177.7 seconds to 1.6 seconds re-
sults from three distinctive improvements. The first improvement,
which was described in Section 2.3 involved the elimination of all
host-to-device and device-to-host data movement due to the imple-
mentation of a GPU-resident bookkeeping algorithm. The second
is the increase in useful work performed by the GPU. The third is a
significant reduction in message-passing data volume due to the
new message-passing approach. We first describe the increase in
useful work performed by the GPU, followed by the reduction in
message passing volume.

Recall that for the naive implementation, the extent of the main
do-loop is 𝑛𝑝𝑎𝑟𝑐𝑒𝑙𝑠 resulting in the launching 𝑛𝑝𝑎𝑟𝑐𝑒𝑙𝑠/𝑤𝑎𝑟𝑝𝑆𝑧

blocks of work where𝑤𝑎𝑟𝑝𝑆𝑧 is the number of threads in a block
or a warp. A number of these threads do not represent useful work.
Reducing the extent of the main do-loop and eliminating the if-
test ensures that each warp issued to the GPU now represents
useful work. Furthermore, in the BASE-GPU configuration, the
large droplet array is transferred between the host and device while
on the OPT-GPU all calculations are GPU resident.
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Figure 9: The computational time of Lagrangian droplets
using the naive and improved message passing code. Results
are provided for the BASE-CPU, OPT-CPU, BASE-GPU, and
OPT-GPU configurations on the CPU and GPU nodes.

Figure 9 clearly illustrates that the OPT-CPU code enabled an in-
crease in the total number of droplets due to a reduction in memory
usage from a maximum of 8 million to 32 million. We next examine
the detailed communication cost for the naive and improved MPI
implementations on both CPU and GPU.

The communication costs are illustrated in Figure 10. In terms
of the communication cost for the BASE version, the Lagrangian
droplet capability on the GPU is about 4× to 6× lower than on the
CPU. This difference in communication cost is primarily caused
by the fact that the GPU uses fewer (8 versus 1024) MPI ranks to
perform the “allreduce” operation versus the CPU.

Using the improved MPI implementation present in the OPT
versus the BASE versions, we observed 3× to 487× speedup on
CPU-based runs and 4× to 272× speedup on the GPU-based runs.
This significant reduction in communication time is expected due
to a reduction in message volume. Recall that equation 3 describes
the expected reduction in message volume for the improved imple-
mentation of Droplets-Comm. While the value for 𝑛𝑝𝑎𝑟𝑐𝑒𝑙𝑠𝐷𝑒𝑝𝑎𝑟𝑡

is dependent on the wind velocity, we have observed that typi-
cally only 1/100 of the local particles depart each MPI domain, so
𝑛𝑝𝑎𝑟𝑐𝑒𝑙𝑠𝐷𝑒𝑝𝑎𝑟𝑡 = .01 ∗ 𝑛𝑝𝑎𝑟𝑐𝑒𝑙𝑠/𝑝 . Therefore we expect a theoreti-
cal reduction in message volume of approximately 1400× for our
particular eight MPI rank case. Unfortunately, the 1400× reduction
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in message volume does not directly result in a similar improvement
in execution time. Instead, we observe a still impressive 200 to 400×
reduction in execution time. This more modest improvement in
execution time is a direct result of the significant amount of book-
keeping necessary to support the improved MPI implementation.
For example, the two-phased message-passing approach, along
with the allocation and deallocation of message-passing buffers
consumes time.
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Figure 10: The communication time for Lagrangian droplets
using the naive and improved message passing code. Results
are provided for the BASE-CPU, OPT-CPU, BASE-GPU, and
OPT-GPU configurations on CPU and GPU nodes.

4.3 Weak scaling on GPU
We next look at the scaling characteristics of the GPU-enabled
CM1. We anticipate that the GPU-enabled CM1 will be run using a
fixed physical grid with as many droplets as will fit into the device
memory. While it would be possible to provide scaling results for a
fixed problem size on a variety of GPUs, the selection of a single
number of droplets for the entire simulation would be challenging.
In particular, the number of droplets that could be used on a small
number of GPUs would not accurately reflect how the code will be
used in practice. Instead, to simplify the comparison, we look at a
weak-scaled configuration of CM1 that uses a fixed physical grid
size and droplet count per GPU. Specifically, we configure CM1 to
have a 128 × 128 × 1024 physical grid with 3.9 million droplets per
GPU. Such a per GPU configuration matches the target resolution
of 2048 × 2048 × 1024 with 1 billion droplets on 256 GPUs used by
the ASD project. The timing for the main sections of the CM1 code
for GPU counts that range from 4 to 256 is provided in Figure 11.

Figure 11 clearly illustrates that while the total execution time
is larger on 256 versus 4 GPUs, in general, CM1 does achieve ac-
ceptable weak scaling. The time to simulate a single model minute
increases from 219 seconds on 4 GPUs to 319 seconds on 256 GPUs.
While both the Boundary-Exch and Droplets-Comm sections, which
include message passing, increase modestly in execution time, the
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Figure 11: The execution time for one model minute for a
weak scaled configuration of CM1. Each GPU has 128 × 128 ×
1024 physical grid points with 3.9 million droplets.

rest of the CM1 except for the Diagnostics section increases very
modestly. The Diagnostics section of code, which contains a very
large number of MPI reductions, accounts for approximately 65
seconds of the total 100 seconds increase in execution time.

In Figure 11 a single MPI rank uses a single GPU. NVIDIA pro-
vides the ability for multiple MPI ranks to share a single GPU. This
capability is enabled through the use of the Multi-Process Service
(MPS) and can be particularly useful when there is insufficient paral-
lelism to keep a single GPU fully utilized. Using a 1024×1024×1024
configuration with a total of 250M droplets we tested the impact
of the MPS server on execution time. We compare the 64 GPU
case from Figure 11 with MPS configurations that utilized 128, 256,
and 512 MPI. These MPI rank counts correspond to two, four, and
eight MPI ranks sharing a single GPU respectively. A very slight
decrease in execution time of 1% is observed for the 128 MPI rank
configuration, versus the 64 MPI rank configuration. The 256 and
512 MPI rank configurations are 3% and 9% slower than the 64 MPI
rank configuration. Detailed investigation of the various compo-
nent costs reveals that while the cost of the Acoustic Solver and
the Droplet- Microphysics decrease with an increase in the number
of MPI ranks, the cost of the Droplet-Comm and Bndry Exchange
both increase. Because of the mixed impact that the use of the MPS
server has on overall performance, for simplicity, we only use a
single MPI rank per GPU for the remainder of the paper.

Next, we look at the overall execution time for an ASD configu-
ration using CPU and GPU-based nodes.

4.4 A large scale configuration
We next compare 256 CPU-based nodes to 64 GPU-based nodes.
Recall that each GPU-based node contains 4 A100 GPUs, resulting
in a comparison of 256 CPU-based nodes to 256 GPU devices. We
use a single problem size configuration with 2048 × 2048 × 1024
physical grid and a total of 1 billion droplets. For this configuration,
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each CPU node or GPU has a 128×128×1024 physical domain with
3.9 million droplets which was described in the previous section.

The execution time in seconds for one simulated minute is pro-
vided in Table 1 for both the CPU and GPU configurations.

Table 1: Execution time for 1 model minutes in seconds and
speedup for a 2048 × 2048 × 1024 configuration of CM1 with
1 billion droplets using 256 CPU-based nodes and 256 GPU
devices.

Section of Code CPU GPU Speedup
AcousticSolver 406.4 68.1 5.97
Turbulence 53.3 11.8 4.50
Advection 156.5 27.8 5.62
File IO 2.8 7.2 0.39

Diagnostics 62.5 68.5 0.91
load-imbalance 251.3 6.1 41.48

Other 184.0 33.4 5.51
Bndry exchange 148.6 31.2 4.76

Lagrangian droplets
Microphysics 167.4 19.0 8.82

Comm 20.9 4.2 5.02
Diagnostics 8.2 11.6 0.71

Total 1462.1 288.9 5.06

Overall, GPU enablement reduces the execution time by a factor
of nearly 5.1× versus the CPU code. The cost breakdown for several
sections is also provided in Table 1. Note that in addition to the
sections of CM1 previously described, we also provide times for
file I/O, MPI boundary exchange operations Bndry Exchange and
the Droplet-Comm operators as well as time spent waiting for com-
putational load imbalance. Note that we time the computational
load imbalance by the addition of an MPI_barrier call before each
group of MPI calls. Surprisingly, approximately 17% of the total
time on the CPU run is spent waiting for load imbalance. To avoid
the potential overhead cost of the MPI_barrier call, we utilize the
Cray Programming Environment CrayPAT tool [7] which confirms
our observation that approximately 20% of the total time is con-
sumed by load-imbalance for the CPU-based runs. Interestingly, the
GPU runs only spent 2.1% of the total time in computational load
imbalance. Visualizations of droplet densities revealed the presence
of compact regions of the computational grid with unusually large
droplet counts. The larger MPI domains used by the GPU-based
version reduce the overall impact of these small-scale flow inho-
mogeneities on execution time load imbalance. For simplicity, we
indicate all other calculations not otherwise categorized as Other.

Excellent speedup is observed for the execution time for the
Acoustic solver, Advection, Turbulence, Other, and Lagrangian droplet
which range from 4.5× to 8.8×. Unfortunately, the other sections
of CM1 do not achieve a similar speedup. In particular, File I/O and
Diagnostics costs are more expensive on the GPU.

Table 1 indicates that the GPU-enabled CM1 achieves a signifi-
cant reduction in execution time. What is not clear from Table 1 is
how efficiently our GPU-enabled application utilizes the GPU. It is
possible to evaluate code efficiency by generating a roofline analysis
diagram for several of the most expensive kernels using the Nsight

compute tool[18]. To simplify data collection, we use a four GPU
configuration with a per GPU problem size that is consistent with
the weak scaled configuration in Section 4.3. Because we are most
interested in the efficiency of the computational components of
the GPU-enabled CM1, we disable the rather expensive Diagnostic
section. The roofline diagram for the five most expensive kernels is
provided in Figure 12.
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Figure 12: The roofline diagram for the five most expensive
kernels.

Note that droplet_driver_348_gpu kernel which represents 8.9%
of the total execution time is the main computational kernel for the
Droplet-Microphysics section of CM1. The four sounde_* kernels,
which account for 37.6% of the total execution time, represent the
Acoustic Solver. It is clear from Figure 12 that the four sounde kernels
are quite efficient as their measured floating point operation rate is
very near the bandwidth limitation for theHigh BandwidthMemory
(HBM) used by the GPU. The droplet_driver_348_gpu kernel is sig-
nificantly less efficient. The reasonwhy the droplet_driver_348_gpu
kernel is less efficient is that it is quite large (approximately 2000
lines of code) and uses a large number of registers. The next most
important kernel consumes 1.6% of the total time and has charac-
teristics similar to the sounde kernels. The remaining execution
time is consumed by either message passing or a very large num-
ber of kernels that have similar characteristics to the sounde ker-
nels. While it may be possible to improve the efficiency of the
droplet_driver_348_gpu kernel by reducing the size of the kernel,
it would only impact approximately 9% of the total execution time
of the GPU-enabled version of CM1. We therefore conclude that
our current implementation does, in general, make efficient use of
the GPU.

4.5 Energy Efficiency
A key advantage of GPU-based computing is that it typically has
higher energy efficiency than a CPU-based solution. It is possible
to directly measure cumulative energy or instantaneous power
through the use of the Cray Power Management counters [1]. The
Cray Power Management counters consist of several kernel regis-
ters that are accessible through the /𝑠𝑦𝑠/𝑐𝑟𝑎𝑦/𝑝𝑚_𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠 direc-
tory. While it is possible to access these registers through the use
of CrayPAT, we used a simpler approach that captured these regis-
ters every several seconds and wrote the output to a log file. The
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cumulative energy usage for both the CPU and GPU configuration
described previously in Section 4.4 is provided in Table 2.

Table 2: Energy usage in kilowatt-hours (kWh) for one sim-
ulated minute of a 2048 × 2048 × 1024 configuration of CM1
with 1 billion droplets using 256 CPU-based nodes and 256
GPU devices.

Component CPU-based GPU-based
Accelerators - 4.39

CPU 33.30 0.49
Memory 16.92 0.57

Other energy 13.13 0.83
Total 63.36 6.27

We collect the energy usage for multiple components of the node
including the CPU, memory, and the GPU accelerators if present. In
addition to the component-specific registers, there is also an overall
energy usage. We indicate the difference between the overall and
sum of the component energy usage as Other energy. While it is
unclear what the exact source of the Other energy recorded by
the Cray power management counters it does appear to be quite
consistent and approximately 13% on GPU-based nodes and 20% on
CPU-based nodes. It is clear from Table 2 that the use of the GPU-
enabled CM1 reduces energy usage significantly, by a factor of 10×.
It should be noted that the accuracy of these measurements has not
been independently validated using physical measurements by the
authors. However, we do note that the Cray Power Management
counters and those provided by the NVIDIA management library
are consistent. It should also be noted that there were very small
variations in energy measurements between multiple runs except
for a small number of anomalous readings. Specifically, two GPU-
based nodes indicated instantaneous power measurements that
were not physically possible. Based on the fact that these two nodes
consistently generated anomalous readings, and all other nodes
generated consistent and reproducible results, we believe these
nodes to have faulty energy sensors. To prevent these nodes from
impacting our energy measurements, we replaced energy log files
with data from nodes with healthy sensors.

5 CONCLUDING REMARKS
We have described our efforts to GPU-enable CM1 including the
creation of a portable and performant Lagrangian droplet capa-
bility. This effort involved the addition of OpenACC directives to
CM1 and the redesign and augmentation of the existing particle
capability. The creation of an efficient Lagrangian droplet capabil-
ity involved the changing of the fundamental data structure and
the creation of a new message-passing capability that minimizes
the amount of data moved through the high-performance network.
These efforts have enabled an increase in the number of droplets
that can be simulated on a CPU-based system by a factor of 4×
versus the initial version of the code. The use of the GPU-enabled
version of CM1 further reduces the time to perform scientifically
relevant simulations by a factor of 5.1× versus CPU-based nodes
and represents a step forward towards leveraging the Lagrangian-
based microphysics framework for understanding a wide variety
of atmospheric phenomena.

Despite the progress made in reducing the cost of CM1 and its
Lagrangian droplet capability, additional work is still necessary.
The cost of the Diagnostics is disappointingly large and can likely
be improved. Additionally, we expect that the efficiency of the
Lagrangian microphysics calculations can be improved.

OPEN RESEARCH
The source code, log files, plotting scripts, and example namelist
and runscripts used for this paper are available on Zenodo [11].
Instructions on how to build and execute CM1 on both CPU and
GPU-based notes as well as descriptions of how data from log files
are converted to plots are also provided.
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